Guida lineare con L298N
Questa scheda controllo motori è basata sul driver Dual H-Bridge L298N e permette di pilotare con semplicità due motori DC oppure un motore passo-passo bipolare con tensione operativa compresa nel range tra 5V e 35V, controllandone la velocità e la direzione.
Il modulo integra un regolatore di tensione che permette di fornire una tensione di 5V anche se la tensione della fonte di alimentazione è più alta. Come mostrato nell'immagine sotto riportata, sulla scheda controllo motori è presente un ponticello legato al funzionamento del regolatore di tensione integrato: se viene fornita una tensione di alimentazione più alta di 12V è sufficiente rimuovere il ponticello per abilitare il regolatore di tensione a 5V.
[image:]
	

1. Connettore "+" per Motore DC A oppure "A+" per motore passo-passo
2. Connettore "-" per Motore DC A oppure "A-" per motore passo-passo
3. Ponticello 12V – rimuovere il ponticello se si utilizza una tensione di alimentazione più alta di 12V; questo abilita il regolatore di tensione a 5V
4. Connettore per l'alimentazione del motore (max 35V) – rimuovere il ponticello 12V (n.3) se la tensione è >12V
5. GND
6. Uscita 5V se il jumper 12V è in posizione; adatto per l'alimentazione di una scheda Arduino
7. Jumper per l'attivazione del motore DC A; mantenere il jumper in posizione se si utilizza un motore passo-passo. Collegare all'uscita PWM per abilitare il controllo della velocità del motore DC.
8. IN1
9. IN2
10. IN3
11. IN4
12. Jumper per l'attivazione del motore DC B; mantenere il jumper in posizione se si utilizza un motore passo-passo; collegare all'uscita PWM di Arduino per abilitare il controllo della velocità del motore DC
13. Connettore "+" per Motore DC B oppure "B+" per motore passo-passo
14. Connettore "-" per Motore DC B oppure "B-" per motore passo-passo

Alimentazione motori DC a 5 V direttamente da Arduino
In questo caso si utilizza il connettore 6 per tensioni di di alimentazione del motore di 5V.

[image: https://www.robotstore.it/images/products/Scheda_controllo_motori_Dual-H-Bridge_DC-stepper_L298N_arduino.jpg]
Alimentazione motori DC a TENSIONE >5V (a batteriE)
In questo caso si utilizza il connettore 4 per tensioni maggiori di 5V.
[image:]
NB: Collegare una fonte esterna (es. 12V) al morsetto VCC del L298N e collegare il GND della batteria al GND di Arduino.

PIN ABILITATI ALLA PWM
[image:]

ESERCIZIO 1

// motor 1
int enA = 10; int in1 = 9; int in2 = 8;
// motor 2
int enB = 5; int in3 = 7; int in4 = 6;

void setup()
{
 // set all the motor control pins to outputs
 pinMode(enA, OUTPUT); pinMode(in1, OUTPUT); pinMode(in2, OUTPUT);
pinMode(enB, OUTPUT); pinMode(in3, OUTPUT); pinMode(in4, OUTPUT);
}

void loop()
{
// turn on motor A
 digitalWrite(in1, HIGH); digitalWrite(in2, LOW);
 // set speed to 200 (0~255)
 analogWrite(enA, 200);

 // turn on motor B
 digitalWrite(in3, HIGH); digitalWrite(in4, LOW);
 // set speed to 200 (0~255)
 analogWrite(enB, 200);

 delay(2000);

 // now change motor directions
 digitalWrite(in1, LOW); digitalWrite(in2, HIGH);
 digitalWrite(in3, LOW); digitalWrite(in4, HIGH);
 delay(2000);

 // now turn off motors
 digitalWrite(in1, LOW); digitalWrite(in2, LOW);
 digitalWrite(in3, LOW); digitalWrite(in4, LOW);
}

ESERCIZIO 2

// motor 1
int enA = 10; int in1 = 9; int in2 = 8;
// motor 2
int enB = 5; int in3 = 7; int in4 = 6;

void setup()
{
 // set all the motor control pins to outputs
 pinMode(enA, OUTPUT); pinMode(in1, OUTPUT); pinMode(in2, OUTPUT);
pinMode(enB, OUTPUT); pinMode(in3, OUTPUT); pinMode(in4, OUTPUT);
}

void loop()
{
 // turn on motors
 digitalWrite(in1, LOW); digitalWrite(in2, HIGH);
 digitalWrite(in3, LOW); digitalWrite(in4, HIGH);

 // accelerate from zero to maximum speed
 for (int i = 0; i < 256; i++)
 {
 analogWrite(enA, i);
 analogWrite(enB, i);
 delay(20);
 }

 // decelerate from maximum speed to zero
 for (int i = 255; i >= 0; --i)
 {
 analogWrite(enA, i);
 analogWrite(enB, delay(20);
 }

 // now turn off motors
 digitalWrite(in1, LOW); digitalWrite(in2, LOW);
 digitalWrite(in3, LOW); digitalWrite(in4, LOW);

delay(1000);
}

ESERCIZIO 1

Vogliamo muovere il carrello della guida a destra o a sinistra quando premiamo i corrispondenti pulsanti.

// Definizione Pin Driver L298N
const int pinENA = 9; const int pinIN1 = 8; const int pinIN2 = 7;

// Definizione Pin Pulsanti (collegati a GND)
const int btnSX = 2; const int btnDX = 3;

// Definizione Pin Finecorsa (collegati a GND - Pullup)
const int fcSX = 4; const int fcDX = 5;

// Variabile per la velocità (0-255)
int velocita = 200;

void setup() {
 pinMode(pinENA, OUTPUT); pinMode(pinIN1, OUTPUT); pinMode(pinIN2, OUTPUT);

 // Input con resistenza di pullup interna
 pinMode(btnSX, INPUT_PULLUP); pinMode(btnDX, INPUT_PULLUP);
 pinMode(fcSX, INPUT_PULLUP); pinMode(fcDX, INPUT_PULLUP);
}

void loop() {
 // Lettura stato pulsanti e finecorsa (LOW = attivato)
 bool muoviSX = digitalRead(btnSX) == LOW;
 bool muoviDX = digitalRead(btnDX) == LOW;
 bool stopSX = digitalRead(fcSX) == LOW;
 bool stopDX = digitalRead(fcDX) == LOW;

 // Logica di movimento
 if (muoviSX && !stopSX) {
 // Muovi a Sinistra
 digitalWrite(pinIN1, HIGH); digitalWrite(pinIN2, LOW); analogWrite(pinENA, velocita);
 }
 else if (muoviDX && !stopDX) {
 // Muovi a Destra
 digitalWrite(pinIN1, LOW); digitalWrite(pinIN2, HIGH); analogWrite(pinENA, velocita);
 }
 else {
 // Ferma il motore se nessun tasto è premuto o se il finecorsa è raggiunto
 fermaMotore();
 }
}

void fermaMotore() {
 digitalWrite(pinIN1, LOW); digitalWrite(pinIN2, LOW); analogWrite(pinENA, 0);
}

ESERCIZIO 2

const int pinENA = 9; const int pinIN1 = 8; const int pinIN2 = 7;

const int btnSX = 2; const int btnDX = 3;
const int fcSX = 4; const int fcDX = 5;

int velocita = 200;

// Variabili per il cronometro
unsigned long tempoInizio = 0;
bool inMovimento = false;

void setup() {
 Serial.begin(9600);

 pinMode(pinENA, OUTPUT); pinMode(pinIN1, OUTPUT); pinMode(pinIN2, OUTPUT);

 // Input con resistenza di pullup interna
 pinMode(btnSX, INPUT_PULLUP); pinMode(btnDX, INPUT_PULLUP);
 pinMode(fcSX, INPUT_PULLUP); pinMode(fcDX, INPUT_PULLUP);

 // --- FASE DI HOMING (All'accensione va a sinistra) ---
 Serial.println("Homing in corso...");
 while (digitalRead(fcSX) == HIGH) { // Finché il finecorsa non è premuto
 digitalWrite(pinIN1, HIGH);
 digitalWrite(pinIN2, LOW);
 analogWrite(pinENA, 150); // Velocità moderata per sicurezza
 }
 fermaMotore();
 Serial.println("Guida pronta a sinistra.");
 delay(1000); // Pausa di sicurezza
}

void loop() {
 bool muoviSX = digitalRead(btnSX) == LOW;
 bool muoviDX = digitalRead(btnDX) == LOW;
 bool stopSX = digitalRead(fcSX) == LOW;
 bool stopDX = digitalRead(fcDX) == LOW;

 // Movimento a SINISTRA
 if (muoviSX && !stopSX) {
 avviaMotore(true);
 }
 // Movimento a DESTRA
 else if (muoviDX && !stopDX) {
 avviaMotore(false);
 }
 // Gestione ARRESTO e CRONOMETRO
 else {
 if (inMovimento) {
 unsigned long durata = millis() - tempoInizio;
 fermaMotore();

 // Se si ferma perché ha toccato un finecorsa, stampa il tempo
 if (stopSX || stopDX) {
 Serial.print("Corsa completata! Tempo impiegato: ");
 Serial.print(durata / 1000.0); // Converte in secondi
 Serial.println(" s");
 }
 inMovimento = false;
 }
 fermaMotore();
 }
}

void avviaMotore(bool sinistra) {
 if (!inMovimento) {
 tempoInizio = millis(); // Fa partire il cronometro
 inMovimento = true;
 Serial.println("Movimento avviato...");
 }

 analogWrite(pinENA, velocita);

 if (sinistra) {
 digitalWrite(pinIN1, HIGH);
 digitalWrite(pinIN2, LOW);
 } else {
 digitalWrite(pinIN1, LOW);
 digitalWrite(pinIN2, HIGH);
 }
}

void fermaMotore() {
 digitalWrite(pinIN1, LOW);
 digitalWrite(pinIN2, LOW);
 analogWrite(pinENA, 0);
}
image1.png

image2.jpeg

image3.png
r” AR Battery |

T
p—]

il
- Auemieq vy \J\‘

image4.png
© v »n |
~e "n'n«:’

